extension | φ:Q→Out N | d | ρ | Label | ID |
(C22×C3⋊S3)⋊1S3 = C2×He3⋊2D4 | φ: S3/C1 → S3 ⊆ Out C22×C3⋊S3 | 72 | | (C2^2xC3:S3):1S3 | 432,320 |
(C22×C3⋊S3)⋊2S3 = C2×He3⋊3D4 | φ: S3/C1 → S3 ⊆ Out C22×C3⋊S3 | 72 | | (C2^2xC3:S3):2S3 | 432,322 |
(C22×C3⋊S3)⋊3S3 = C62⋊D6 | φ: S3/C1 → S3 ⊆ Out C22×C3⋊S3 | 36 | 12+ | (C2^2xC3:S3):3S3 | 432,323 |
(C22×C3⋊S3)⋊4S3 = C62⋊5D6 | φ: S3/C1 → S3 ⊆ Out C22×C3⋊S3 | 18 | 6+ | (C2^2xC3:S3):4S3 | 432,523 |
(C22×C3⋊S3)⋊5S3 = C22×C32⋊D6 | φ: S3/C1 → S3 ⊆ Out C22×C3⋊S3 | 36 | | (C2^2xC3:S3):5S3 | 432,545 |
(C22×C3⋊S3)⋊6S3 = C3⋊S3×S4 | φ: S3/C1 → S3 ⊆ Out C22×C3⋊S3 | 36 | | (C2^2xC3:S3):6S3 | 432,746 |
(C22×C3⋊S3)⋊7S3 = C62⋊10D6 | φ: S3/C1 → S3 ⊆ Out C22×C3⋊S3 | 24 | 12+ | (C2^2xC3:S3):7S3 | 432,748 |
(C22×C3⋊S3)⋊8S3 = C2×C33⋊6D4 | φ: S3/C3 → C2 ⊆ Out C22×C3⋊S3 | 144 | | (C2^2xC3:S3):8S3 | 432,680 |
(C22×C3⋊S3)⋊9S3 = C2×C33⋊8D4 | φ: S3/C3 → C2 ⊆ Out C22×C3⋊S3 | 72 | | (C2^2xC3:S3):9S3 | 432,682 |
(C22×C3⋊S3)⋊10S3 = C3⋊S3×C3⋊D4 | φ: S3/C3 → C2 ⊆ Out C22×C3⋊S3 | 72 | | (C2^2xC3:S3):10S3 | 432,685 |
(C22×C3⋊S3)⋊11S3 = C2×C33⋊9D4 | φ: S3/C3 → C2 ⊆ Out C22×C3⋊S3 | 48 | | (C2^2xC3:S3):11S3 | 432,694 |
(C22×C3⋊S3)⋊12S3 = C62⋊24D6 | φ: S3/C3 → C2 ⊆ Out C22×C3⋊S3 | 24 | 4 | (C2^2xC3:S3):12S3 | 432,696 |
(C22×C3⋊S3)⋊13S3 = C22×C32⋊4D6 | φ: S3/C3 → C2 ⊆ Out C22×C3⋊S3 | 48 | | (C2^2xC3:S3):13S3 | 432,769 |